BurstCube

A CubeSat for Gravitational Wave Counterparts

Jeremy S. Perkins (NASA/GSFC), Judith L. Racusin (NASA/GSFC), Michael S. Briggs (UAH), Georgia de Nolfo (NASA/GSFC), John Krizmanic (NASA/GSFC/CRESST), Regina Caputo (NASA/GSFC/CRESST), Julie E. McEnery (NASA/GSFC), Peter Shawhan (UMD) & David Morris (UVI), Collaborators: Eric Burns (NASA/GSFC/NPP), Antonino Cucchiara (UVI), Sean Griffin (NASA/GSFC/CRESST), Lorraine Hanlon (UCD), Dieter Hartmann (Clemson), Michelle Hui (NASA/MSFC), Dan Kocevski (NASA/MSFC), Amy Lien (NASA/GSFC/CRESST), Sheila McBreen (UCD), Lee Mitchell (NRL) & Colleen Wilson-Hodge (NASA/MSFC)

See ICRC 2017 Proceedings for More Details: https://asd.gsfc.nasa.gov/burstcube/

Grand Overview of BurstCube

- BurstCube: a 6U CubeSat that will detect and localize Gamma-ray Bursts (GRBs):
 - Focus on short GRBs (sGRBs; binary neutron star mergers) that are the counterparts of gravitational wave (GW) sources.
- Will detect these with four Csl scintillators coupled with arrays of compact low-power Silicon photomultipliers (SiPMs).
- Spacecraft based on NASA/GSFCs Dellingr platform with many components sources commercially-off-the-shelf (COTS).
- Complement existing facilities (Swift, Fermi) and could be an interim
 GRB instrument before next generation missions fly.
- BurstCube will fly in 2021.
- The ultimate configuration of BurstCube would be a set of ~5
 CubeSats providing all-sky coverage for a very low cost.

BurstCube Science

- BurstCube will increase the sky coverage for short (<2 s) GRBs, especially important in the current era of GW discoveries.
- New GW detectors are coming online between now and 2021.
- The recent coincident detection of a sGRB (by Fermi and other multiwavelength partners) and a GW trigger has provided concrete proof that at least some sGRBs are produced by BNS mergers.

BurstCube Science

Provide localizations:

- Assist wide-field follow-up observers in afterglow detection and redshift measurement.
- Will lead to:
 - Additional insight into cosmological parameter estimation,
 - Constraint on the neutron star
 equation of state, and
 - An inventory of r-process elements in the Universe constrained by the faint short GRB kilonova signature (seen in the most recent event).

BurstCube Science

- BurstCube will detect GRBs (long and short) from the entire unocculted sky
 - Providing broadband spectra for burst detected elsewhere
 - Rough localization for follow-up
 - Accurately timed light curves
- BurstCube will also detect solar flares, magnetar flares, and other hard X-ray transients, as well as persistent sources via occultation analysis
- BurstCube is complementary to current instruments but in a future without other GRB triggering instruments, BurstCube could provide all-sky coverage for a small fraction of the cost of an Explorer.

Mission Concept

- For a small fraction of the cost of an explorer mission, BurstCube will
 - Detect, Roughly Localize, and Characterize GRBs
- This approach is complementary to existing or upcoming facilities (e.g. Swift, Fermi, SVOM)
 - Especially if there is a gap between GRB missions operating at the peak of the GW observatory operations.

Mission Implementation

- BurstCube is a 6U CubeSat that includes
 - Deployable Solar Panels
 - Full ACS System
- Instrument Package
 - 4 Csl scintillator crystals coupled to arrays of low-power Silicon Photomultipliers (SiPMs) with custom electronics
 - Localizes GRBs based on relative intensities in each detector.
- BurstCube will observe the full un-occulted sky
 by zenith pointing, recording gamma-ray
 photons, and triggering on significant rate
 fluctuations.
- BurstCube will relay data to the ground every
 2-12 hours.
- Trigger data will be immediately transferred to the ground via the GlobalStar network or TDRS (TBD).
- The instrument hardware and flight and ground software design relies heavily upon heritage from Fermi-GBM.

Mission Performance

- Continuous Science Operations
- Detect ~24 sGRBs/year
 - Including ~1 coincident sGRB-GW/yr
 - Large increase from not having BurstCube
- Detect > 100 long GRBs/yr in addition to other gamma-ray transients (solar flares, SGRs, etc.)
 - Will result in a significant increase in statistics.
- BurstCube has competitive performance with *Fermi*-GBM

Effective area is 67% that of the larger GBM NaI detectors at 100 keV and 15 degree incidence (MEGAlib based sims)

Updates: Dellingr Deployment

Courtesy: Dellingr Team

Dellingr FlatSat Development:

- Dellingr team is beginning to test S-band radio on the FlatSat.
- Goal is to use this radio on BurstCube with TDRS

Courtesy: Dellingr Team

Updates: Instrument Design

- Received funding to begin a slow ramp up of the project
- Preliminary Design is underway for the instrument
 - Mechanical
 - Electrical

Testing current SiPM array designs

Programmable SiPM Bias

Gratuitous Recruitment Slide

Looking for a postdoc:

- http://cresst2.umd.edu/opportunities/BurstCube Postdoc Final.pdf
- https://npp.usra.edu/opportunities/details/?ro=19135

Looking for interns:

 https://intern.nasa.gov/ossi/web/public/guest/searchOpps/index.cfm?solarActi on=view&id=29414

Looking for a graduate student:

• Contact one of us: <u>jeremy.s.perkins@nasa.gov</u>, <u>judith.racusin@nasa.gov</u>, <u>georgia.a.denolfo@nasa.gov</u>